GGSIPU mathmatics 2012

1. If the lines x-y-1=0, 4x+3y=k and 2x-3y+1=0 are concurrent, then k is

2. the number of common tangents to the circles $x^2+y^2 = 4$ and $x^2+y^2-8x+12 = 0$ is

3. The centroid of a triangle formed by the points 0,0, cos θ , sin θ and sin θ , - cos θ lie on the line y = 2x; then θ is

a tan
$${}^{-1}2$$
 b tan ${}^{-1}\frac{1}{3}$
c tan ${}^{-1}\frac{1}{2}$ d tan ${}^{-1}$ -3

4. The orthoocentre of the triangle formed by 8,0 and 4,6 with the origin, is

5. If the angle between two lines represented by $2x^2+5xy+3y^2+7y+4 = 0$ is $\tan^{-1} m$, then m is equal to

6. If xy-4x+3y- λ = 0 represents the asymptotes of xy-4x+3y = 0, then λ is

7. The equation of the chord of the parabola $y^2 = 8x$ which is bisected at the point 2, -3, is

8. If x+y+1 = 0 touches the parabola $y^2 = \lambda x$, then λ is equal to

aa) 2 b 4 (c 6 d 8

9. The equations $x = \frac{e^{t} + e^{-t}}{2}$, $y = \frac{e^{t} - e^{-t}}{2}$ where t is real number, represents

- a an ellipse b a parabola
- c a hyperbola d a circle

10. if e_1 and e_2 are the eccentricities of two conics with $e_1^2 + e_2^2 = 3$, then the conics are

- a ellipses b parabolas
- c circles d hyperbolas

11. The sum of the distances of any point on the ellipse $3x^2+4y^2 = 24$ from its foci, is

a 8 2 b 8 c 16 2 d 4 2

12. In \triangle ABC, if a tends to 2c and b tends to 3 c, then cos B tends to

a -1 b $\frac{1}{2}$ c $\frac{1}{3}$ d $\frac{2}{3}$

13. if sin $\pi \cos \theta = \cos \pi \sin \theta$, hen which of the following is correct

a cos
$$\theta = \frac{3}{2\sqrt{2}}$$

b cos $\left(\theta - \frac{\pi}{2}\right) = \frac{1}{2\sqrt{2}}$
c cos $\left(\theta - \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}}$
d cos $\left(\theta + \frac{\pi}{4}\right) = -\frac{1}{2\sqrt{2}}$

14. The value of sin 12° sin 48° sin 54° is equal to

a
$$\frac{2}{3}$$
 b $\frac{1}{2}$
(c) $\frac{1}{8}$ (d) $\frac{1}{3}$
15. If $3\sin^{-1}\left(\frac{2x}{1+x^2}\right) - 4\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) + 2\tan^{-1}\left(\frac{2x}{1-x^2}\right) = \frac{\pi}{3}$ then x is equal to
a $\frac{1}{\sqrt{3}}$ b $-\frac{1}{\sqrt{3}}$

16. The shadow of a pole is $\overline{3}$ times longer. The angle of elevation is equal to

a 40 ° b
$$\frac{45^{\circ}}{2}$$

c 60 ° d 30 °

17. The point of contact of the line x-y+2=0 with the parabola y^2 -8x = 0 is

18. If the sides of a triangle are $x^2 + x + 1$, $x^2 - 1$ and 2x + 1, then the greatest angle is

19. The value of $\cos 1^{\circ}$. Cos 2° . $\cos 3^{\circ}$... $\cos 179^{\circ}$ is equal to

20. If cot $\alpha + \beta = 0$, then sin $\alpha + 2\beta$ is equal to

a sin
$$\alpha$$
 b cos α
c sin β d cos 2 β

21. The value of 4 sin A $\cos^3 A - 4 \cos A \sin^3 A$ is equal to

22. If the solutions for θ of cos of cos p θ +cos q θ = 0, 0>q>0 arer in AP, then the numerically smallest common difference of AP is

a
$$\frac{\pi}{p+q}$$
 b $\frac{2\pi}{p+q}$
c $\frac{\pi}{2 p+q}$ d $\frac{1}{p+q}$

23. The value of k for which $\cos x + \sin x^2 + k \sin x \cos x - 1 = 0$ is that identity, is

24. If 4 cos⁻¹ x + sin⁻¹ x = π , then the value of x is

a
$$\frac{1}{2}$$
 b $\frac{1}{\sqrt{2}}$
c $\frac{\sqrt{3}}{2}$ d $\frac{2}{\sqrt{3}}$

25. a problem in mathematics is given to 3 students whose chances of solving individually are $\frac{1}{2'3}$ and $\frac{1}{4}$. The probability that the problem will be solved at least by one, is

a
$$\frac{1}{4}$$
 b $\frac{1}{24}$
c $\frac{23}{24}$ d $\frac{3}{4}$

26. In a non-leap year the probability of getting 53 Sundays or 53 Tuesdays or 53 Thursdays is

a $\frac{1}{7}$ b $\frac{2}{7}$ c $\frac{3}{7}$ d $\frac{4}{7}$

27. The probability for a randomly chosen month to have its 10th day as Sunday, is

a
$$\frac{1}{84}$$
 b $\frac{10}{12}$
c $\frac{10}{84}$ d $\frac{1}{7}$

28. If the mean of numbers 27+x, 31+x, 89+x,107+x,156+x is 82, then the mean of 130+x,126+x,68+x,50+x,1+x is

a 79 b 157 c 82 d 75

29. if μ is the mean distribution of $\{Y_i, f_i\}$, then $fi(\cdot_i - \mu)$ is equal to

a MD b SD

c 0 d relative frequency

30. Two cards are drawn successively with replacement from a well-shuffled pack of 52 cards. The probability of drawing two aces is

a
$$\frac{1}{13}$$
 b $\frac{1}{13} \times \frac{1}{17}$
c $\frac{1}{52} \times \frac{1}{51}$ d $\frac{1}{13} \times \frac{1}{13}$

31. If
$$\sec\left(\frac{x+y}{x-y}\right) = a$$
, then $\frac{dy}{dx}$ is
 $a \quad \frac{x}{y} \quad b \quad \frac{y}{x}$
(c) y d x

32. If $x^{y} = e^{x-y}$, then $\frac{dy}{dx}$ is equal to

a
$$\frac{\log x}{1 + \log x}$$
 (b) $\frac{\log x}{1 - \log x}$
c $\frac{\log x}{1 + \log x)^2}$ (d) $\frac{y \log x}{x}$

33. For y = cosm sin $^{-1}$ x which of the following is true?

a 1
$$-x^2 y_2 + xy_1 - m^2 y = 0$$

b 1 $-x^2 y_2 - xy_1 + m^2 y = 0$
c 1+x $^2 y_2 + xy_1 - m^2 y = 0$
(c, (-x²) y₂ + xy₁ + m² y = 0

34. If $f(x = \begin{cases} x+1 & x & 1 \\ 3-ax^2 & x > 1 \end{cases}$ is continuous at x =1, then the value of a is a -1 b 2 (c) -3 (d)1 35. $\lim_{x \to \frac{a}{2}} \frac{a^{\cot x} - a^{\cos x}}{\cot x - \cos x}$ is equal to a log a b log 2 c aa (d) log > 36. If f''0 = k, then $\lim_{x \to 0} \frac{2f(x) - 3f(2x + f(4x))}{x^2}$ is equal to a k b 2k c 3k d 4k_) ... 37. If g is the inverse function of f and f' x = $\frac{1}{1+x^{n}}$, then g'x is equal to a 1+gx ⁿ b 1 -gx

c 1+gx d 1 -gx "

38. The curves $4x^2+9y^2 = 72$ and $x^2-y^2 = 5$ at 3,2

- a touch each other b cut orthogonally
- c interest at 45 $^{\circ}$ d interest at 60 $^{\circ}$

39. The velocity v m/s of a particle is proportional to the cube of the time. If the velocity after 2 s is 4m/s, then v is equal to

$$att^{3}$$
 $b \frac{t^{3}}{2}$
 $c \frac{t^{3}}{3}$ $d \frac{t^{3}}{4}$

40. The minimum value of x log x is equal to

$$a e b \frac{1}{e}$$

 $c -\frac{1}{e} d \frac{2}{e}$

41. A particle moves along the x-axis so that its position is given $x = 2t^3 - 3t^2$ at a time t second. What is the time interval during which particle will be on the negative half of the axis?

a
$$0 < t < \frac{2}{3}$$
 b $0 < 0 < t < 1$
c $0 < t < \frac{3}{2}$ d $\frac{1}{2} < t < 1$

42. A stone thrown vertically upwards satisfies the equations $s = 80t - 16t^2$. The time required to reach the maximum height is

a 2 s b 4 s c 3 s d 2.5 s

43. If f(x+y = f(x, f(y, f(3 = 3, f'0 = 11. Then f'3 is equal to

44. If y = x tan y, then $\frac{dy}{dx}$ is equal to

a
$$\frac{\tan y}{x - x^2 - y^2}$$
 (b $\frac{y}{x - x^2 - y^2}$
c $\frac{\tan y}{y - x}$ (b $\frac{\tan x}{x - y^2}$

45. The product of the lengths of subtangent and subnormal at any point x,y of a curve is

a x² b y² c a constant d x

46. The equation of tangent to the curve

$$\left(\frac{x}{a}\right)^{n} + \left(\frac{y}{b}\right)^{n} = 2 \text{ at} \mathfrak{h}, \text{bbis s}$$

a $\frac{x}{a} + \frac{y}{b} = 2$ b $\frac{x}{a} + \frac{y}{b} = \frac{1}{2}$
c $\frac{x}{b} \cdot \frac{y}{a} = 2$ d $ax + by = 2$

47. If $\frac{x^2 dx}{x^2 + a^2(x^2 + b^2)(x^2 + c^2)} = \frac{\pi}{2(a+b)(b+c)(c+a)}$, then the value of $\frac{x^2}{0} = \frac{1}{x^2 + 4(x^2 + 9)} dx$ is

(a)
$$\frac{\pi}{60}$$
 (b) $\frac{\pi}{20}$ c $\frac{\pi}{40}$ d $\frac{\pi}{80}$

48. $e^{a \log x} + e^{x \log a}$ dx is equal to

a
$$\frac{x^{a+1}}{a+1} + c$$
 b $\frac{x^{a+1}}{a+1} + \frac{a^x}{\log a} + c$
c $x^{a+1} + a^x + c$ d $\frac{x^{a+1}}{a-1} + \frac{\log a}{a^x} + c$

49.
$$\int_{0}^{a} \frac{dx}{x + \sqrt{a^2 - x^2}}$$
 is
(a) $\frac{a^2}{4}$ b) $\frac{\pi}{2}$ cc) $\frac{\pi}{4}$ (c π

50. If $\int_{-1}^{4} f(x) dx = 4$ and $\int_{2}^{4} [3 - f(x) dx = 7]$, then the value of $\int_{-1}^{2} f(x) dx$ is