GGSIPU mathmatics 2012

1. If the lines $x-y-1=0,4 x+3 y=k$ and $2 x-3 y+1=0$ are concurrent, then k is
a 1
b -1
C 25
d 5
2. the number of common tangents to the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}-8 x+12=0$ is
a 1
b 2
c 3
d 4
3. The centroid of a triangle formed by the points $\mathbf{0}, \mathbf{0}, \cos \theta, \sin \theta$ and $\sin \theta,-\cos \theta$ lie on the line $\mathbf{y}=\mathbf{2 x}$; then θ is
a $\tan ^{-1} 2$
b $\tan ^{-1} \frac{1}{3}$
c $\tan ^{-1} \frac{1}{2}$
d $\tan ^{-1}-3$
4. The orthoocentre of the triangle formed by 8,0 and 4,6 with the origin, is
a $\left.4, \frac{8}{3}\right)$
b 3, -4
b 4,3
d 3,4
5. If the angle between two lines represented by $2 x^{2}+5 x y+3 y^{2}+7 y+4=0$ is $\tan ^{-1} \mathrm{~m}$, then m is equal to
a $\frac{1}{5}$
b 1
C $\frac{7}{5}$
d 7
6. If $x y-4 x+3 y-\lambda=0$ represents the asymptotes of $x y-4 x+3 y=0$, then λ is
a 3
-6
c 8
d 12
7. The equation of the chord of the parabola $y^{2}=8 x$ which is bisected at the point $2,-3$, is
a $4 x+3 y+1=0$
b $3 x+4 y-1=0$
c $4 x-3 y-1=0$
d $3 x-4 y+1=0$
8. If $x+y+1=0$ touches the parabola $y^{2}=\lambda x$, then λ is equal to
a) 2 b $\begin{array}{lllll} & \text { b } & \text { (c } 6 & d & 8\end{array}$
9. The equations $x=\frac{e^{t}+e^{-t}}{2}, y=\frac{e^{t}-e^{-t}}{2}$ where t is real number, represents
a an ellipse
b a parabola
c a hyperbola
d a circle
10. if e_{1} and e_{2} are the eccentricities of two conics with $e_{1}{ }^{2}+e_{2}{ }^{2}=3$, then the conics are
a ellipses
b parabolas
c circles
d hyperbolas
11. The sum of the distances of any point on the ellipse $3 x^{2}+4 y^{2}=24$ from its foci, is
a $8 \sqrt{2}$
b 8
c $16 \sqrt{2}$
d $4 \sqrt{2}$
12. In $\triangle A B C$, if a tends to $2 c$ and b tends to $3 c$, then $\cos B$ tends to
$\begin{array}{llllllll}\text { a } & -1 & b & \frac{1}{2} & \text { c } & \frac{1}{3} & \text { d } & \frac{2}{3}\end{array}$
13. if $\boldsymbol{\operatorname { s i n }} \pi \boldsymbol{\operatorname { c o s }} \theta=\boldsymbol{\operatorname { c o s }} \pi \boldsymbol{\operatorname { s i n }} \theta$, , hen which of the following is correct
a $\cos \theta=\frac{3}{2 \sqrt{2}}$
b $\cos \left(\theta-\frac{\pi}{2}\right)=\frac{1}{2 \sqrt{2}}$
c $\cos \left(\theta-\frac{\pi}{4}\right)=\frac{1}{2 \sqrt{2}}$
d $\cos \left(\theta+\frac{\pi}{4}\right)=-\frac{1}{2 \sqrt{2}}$
14. The value of $\sin 12^{\circ} \sin 48^{\circ} \sin 54^{\circ}$ is equal to
a $\frac{2}{3}$
b $\frac{1}{2}$
(c) $\frac{1}{8}$
(d) $\frac{1}{3}$
15. If $3 \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)-4 \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+2 \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{\pi}{3}$, then x is equal to
a $\frac{1}{\sqrt{3}}$
b $-\frac{1}{\sqrt{3}}$

$$
\text { c } \sqrt{3} \quad \text { (1) }-\frac{\sqrt{3}}{2}
$$

16. The shadow of a pole is $\sqrt{3}$ times longer. The angle of elevation is equal to
a 40°
b $\frac{45^{\circ}}{2}$
c $60{ }^{\circ}$
d 30°
17. The point of contact of the line $x-y+2=0$ with the parabola $y^{2}-8 x=0$ is
a 2,4 b
$-2,4$
c 2, -4 d 2,2
18. If the sides of a triangle are $x^{2}+x+1, x^{2}-1$ and $2 x+1$, then the greatest angle is
a $90{ }^{\circ}$
b $135{ }^{\circ}$
c $115{ }^{\circ}$
d $120{ }^{\circ}$
19. The value of $\cos 1^{0} . \cos 2^{0} . \cos 3^{0} \ldots \cos 179^{\circ}$ is equal to
a $\frac{1}{\sqrt{2}}$
b 0
c 1 d -1
20. If $\cot \alpha+\beta=0$, then $\sin \alpha+2 \beta$ is equal to
a $\sin \alpha$
b $\cos \alpha$
c $\sin \beta$
$\mathrm{d} \cos 2 \beta$
21. The value of $4 \sin A \cos ^{3} A-4 \cos A \sin ^{3} A$ is equal to
a $\cos 2 \mathrm{~A}$
b $\sin 3 A$
c $\sin 2 \mathrm{~A}$
d $\sin 4 A$
22. If the solutions for θ of \cos of $\cos p \theta+\cos q \theta=0,0>q>0$ arer in $A P$, then the numerically smallest common difference of AP is
a $\frac{\pi}{p+q}$
b $\frac{2 \pi}{p+q}$
c $\quad-\frac{\pi}{2-p+q)}$
d $\frac{1}{p+q}$
23. The value of k for which $\cos x+\sin x^{2}+k \sin x \cos x-1=0$ is that identity, is
a
1 b
-2
c 0
d 1
24. If $4 \cos ^{-1} x+\sin ^{-1} x=\pi$, then the value of x is
a $\frac{1}{2}$
b $\frac{1}{\sqrt{2}}$
C $\frac{\sqrt{3}}{2}$
d $\frac{2}{\sqrt{3}}$
25. a problem in mathematics is given to 3 students whose chances of solving individually are $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$. The probability that the problem will be solved at least by one, is
a $\frac{1}{4}$
b $\frac{1}{24}$
C $\frac{23}{24}$
d $\frac{3}{4}$
26. In a non-leap year the probability of getting 53 Sundays or 53 Tuesdays or 53 Thursdays is
a $\frac{1}{7}$
b $\frac{2}{7}$
C $\frac{3}{7}$
d $\frac{4}{7}$
27. The probability for a randomly chosen month to have its $10^{\text {th }}$ day as Sunday, is
a $\frac{1}{84}$
b $\frac{10}{12}$
C $\quad \frac{10}{84}$
d $\frac{1}{7}$
28. If the mean of numbers $27+x, 31+x, 89+x, 107+x, 156+x$ is 82 , then the mean of $130+x, 126+x, 68+x, 50+x, 1+x$ is
a $\quad 79$
b 157
C 82
d 75
29. if μ is the mean distributionof $\left\{Y_{i}, f_{i}\right\}$, then $\sum \boldsymbol{f i}\left({ }_{\prime}{ }_{i}-\mu\right.$ is equal to
a MD
b SD
c 0
d relative frequency
30. Two cards are drawn successively with replacement from a well-shuffled pack of $\mathbf{5 2}$ cards. The probability of drawing two aces is

$$
\begin{aligned}
& \text { a } \frac{1}{13} \quad \text { b } \frac{1}{13} \times \frac{1}{17} \\
& \text { c } \frac{1}{52} \times \frac{1}{51} \\
& \text { d } \quad \frac{1}{13} \times \frac{1}{13}
\end{aligned}
$$

31. If $\sec \left(\frac{x+y}{x-y}\right)=\mathrm{a}$, then $\frac{d y}{d x}$ is
a $\frac{x}{y}$
b $\frac{y}{x}$
(c) $y \quad d x$
32. If $\mathrm{x}^{\mathrm{y}}=\mathrm{e}^{\mathrm{x}-\mathrm{y}}$, then $\frac{d y}{d x}$ is equal to
a $\frac{\log x}{1+\log x}$
(b) $\frac{\log x}{1-\log x}$
c $-\frac{\log x}{1+\log x)^{2}}$
(d) $\frac{y \log x}{x} \frac{1+\log x)}{}$
33. For $\mathrm{y}=\operatorname{cosm} \sin ^{-1} \mathrm{x}$ which of the following is true?
a $1-x^{2} y_{2}+x y_{1}-m^{2} y=0$
b $\quad 1-x^{2} y_{2}-x y_{1}+m^{2} y=0$
c $1+x{ }^{2} y_{2}+x y_{1}-m^{2} y=0$
(c. $\quad\left(-x^{2}\right) y_{2}+x y_{1}+m^{2} y=0$
34. If $\mathrm{f}\left(\mathrm{x}=\left\{\begin{array}{cc}x+1 & x \leq 1 \\ 3-a x^{2} & x>1\end{array}\right.\right.$ is continuous at $\mathrm{x}=1$, then the value of a is
a $\quad \mathbf{- 1}$
b 2
(c) -3
(d) 1
35. $\lim _{x \rightarrow \frac{\pi}{2}} \frac{a^{\cot x}-a^{\cos x}}{\cot x-\cos x}$ is equal to
$a \log a$
b $\log 2$
caa
(d) $\log x$
36. If $f^{\prime} ' 0=k$, then $\lim _{x \rightarrow 0} \frac{2 f(x)-3 f(2 x+f(4 x}{x^{2}}$ is equal to
a k b 2k
c 3 k d 4 k)
37. If g is the inversefunction of f and $f^{\prime} x=\frac{1}{1+x^{n}}$, then $g^{\prime} x$ is equal to
a $1+g x$
n
b 1 -gx
c $1+g x$
d 1 -gx ${ }^{n}$
38. The curves $4 x^{2}+9 y^{2}=72$ and $x^{2}-y^{2}=5$ at 3,2
a touch each other
b cut orthogonally
c interest at $45{ }^{\circ}$ d interest at $60{ }^{\circ}$
39. The velocity $v \mathrm{~m} / \mathrm{s}$ of a particle is proportional to the cube of the time. If the velocity after 2 s is $4 \mathrm{~m} / \mathrm{s}$, then v is equal to
a $t t^{3}$
b $\frac{t^{3}}{2}$
c $\frac{t^{3}}{3}$
d $\frac{t^{3}}{4}$
40. The minimum value of $x \log x$ is equal to
a eb $\frac{1}{e}$
c $-\frac{1}{e}$
d $\frac{2}{e}$
41. A particle moves along the x-axis so that its position is given $x=2 t^{3}-3 t^{2}$ at a time t second. What is the time interval during which particle will be on the negative half of the axis?
a $0<t<\frac{2}{3}$ b $00 \ll 1$
c $0<t<\frac{3}{2} \quad$ d $\quad \frac{1}{2}<t<1$
42. A stone thrown vertically upwards satisfies the equations $s=80 t-16 t^{2}$. The time required to reach the maximum height is
a 2 s b 4 s
c 3 s
d 2.5 s
43. If $f\left(x+y=f\left(x, f\left(y, f\left(3=3, f^{\prime} 0=11\right.\right.\right.\right.$. Then $f^{\prime} 3$ is equal to
a $11 . \mathrm{e}^{33}$
b 33
c 11. d lo g 33
44. If $\mathrm{y}=\mathrm{x} \tan \mathrm{y}$, then $\frac{d y}{d x}$ is equal to
a $\frac{\tan y}{x-x^{2}-y^{2}}$
(b) $\frac{y}{x-x^{2}-y^{2}}$
c $\frac{\tan y}{y-x}$
(b) $\frac{\tan x}{x-y^{2}}$
45. The product of the lengths of subtangent and subnormal at any point x, y of a curve is
a x^{2}
b y^{2}
c a constant
d x
46. The equation of tangent to the curve

$$
\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2 \text { at } 6, \text { bbis } 5
$$

a $\quad \frac{x}{a}+\frac{y}{b}=2$
b $\frac{x}{a}+\frac{y}{b}=\frac{1}{2}$
C $\quad \frac{x}{b}-\frac{y}{a}=2$
d $a x+b y=2$
47. If $\int_{0}^{\infty}-\frac{x^{2} d x}{\left.x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)\left(x^{2}+c^{2}\right)}=\frac{\pi}{2 a+b)(b+c)(c+a)}$, then the value of $\int_{0}^{\infty} \frac{1}{\left.x^{2}+4\right)\left(x^{2}+9\right)} \mathrm{dx}$ is
(a) $\frac{\pi}{60}$
(b) $\frac{\pi}{20}$
c $\frac{\pi}{40}$
d $\frac{\pi}{80}$
48. $\left.\int e^{a \log x}+e^{x \log a}\right) \mathrm{dx}$ is equal to
a $\frac{x^{a+1}}{a+1}+c$
b $\frac{x^{a+1}}{a+1}+\frac{a^{x}}{\log a}+c$
c $x^{a+1}+a^{x}+c$
d $\frac{x^{a+1}}{a-1}+\frac{\log a}{a^{x}}+\mathrm{c}$
49. $\int_{0}^{a} \frac{d x}{x+\sqrt{a^{2}-x^{2}}}$ is
(a) $\frac{a^{2}}{4}$
b) $\frac{\pi}{2}$
c) $\frac{\pi}{4}$ (c π
50. If $\int_{-1}^{4} f x d x=4$ and $\int_{2}^{4}\left[3-f x d x=7\right.$, then the value of $\int_{-1}^{2} f x d x$ is
a -2
b 3
C 5
d 8

